975 resultados para tropical neglected diseases


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, World Health Organization ( WHO) and Medicins San Frontieres (MSF) proposed a classification of diseases as global, neglected and extremely neglected. Global diseases, such as cancer, cardiovascular and mental (CNS) diseases represent the targets of the majority of the R&D efforts of pharmaceutical companies. Neglected diseases affect millions of people in the world yet existing drug therapy is limited and often inappropriate. Furthermore, extremely neglected diseases affect people living under miserable conditions who barely have access to the bare necessities for survival. Most of these diseases are excluded from the goals of the R&D programs in the pharmaceutical industry and therefore fall outside the pharmaceutical market. About 14 million people, mainly in developing countries, die each year from infectious diseases. From 1975 to 1999, 1393 new drugs were approved yet only 1% were for the treatment of neglected diseases [ 3]. These numbers have not changed until now, so in those countries there is an urgent need for the design and synthesis of new drugs and in this area the prodrug approach is a very interesting field. It provides, among other effects, activity improvements and toxicity decreases for current and new drugs, improving market availability. It is worth noting that it is essential in drug design to save time and money, and prodrug approaches can be considered of high interest in this respect. The present review covers 20 years of research on the design of prodrugs for the treatment of neglected and extremely neglected diseases such as Chagas' disease ( American trypanosomiasis), sleeping sickness ( African trypanosomiasis), malaria, sickle cell disease, tuberculosis, leishmaniasis and schistosomiasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Miniscule research resources are allocated to researching the diseases of developing countries such as malaria, tuberculosis (TB), dengue fever, river blindness, Chagas disease and leishmaniasis, and the strains of HIV prevalent in Africa. Plainly, the patent system and the commercial model of drug research fail to respond to the needs of the poor for the simple reason that the poor exercise little purchasing power. But pressures are mounting on governments and corporations to tackle the ‘neglected diseases’ calamity. An important argument in an intense global debate is that corporations would respond to the needs of developing countries if the diseases of the poor could be made profitable. This is the idea developed by Kremer and Glennerster in a crisply written book, Strong Medicine: Creating Incentives for Pharmaceutical Research on Neglected Diseases.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Who invents medicines for the poor of the world? This question becomes very important where the WTO allows low income countries to be unbound by the TRIPS agreement. This agreement concerns medicines for infectious diseases such as HIV/AIDS, tuberculosis and malaria. These diseases cause serious damage to low income countries. Under these circumstances, some scholars wonder if anyone will continue innovative activities related to treating these diseases. This paper sought to answer this question by collecting and analyzing patent data of medicines and vaccines for diseases using the database of the Japan Patent Office. Results indicate that private firms have led in innovation not only for global diseases such as HIV/AIDS but also diseases such as malaria that are spreading exclusively in low income countries. Innovation for the three infectious diseases is diverse among firms, and frequent patent applications by high-performing pharmaceutical firms appear prominent even after R&D expenditure, economies of scale, and economies of scope are taken into account.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increase in incidence of infectious diseases worldwide, particularly in developing countries, is worrying. Each year, 14 million people are killed by infectious diseases, mainly HIV/AIDS, respiratory infections, malaria and tuberculosis. Despite the great burden in the poor countries, drug discovery to treat tropical diseases has come to a standstill. There is no interest by the pharmaceutical industry in drug development against the major diseases of the poor countries, since the financial return cannot be guaranteed. This has created an urgent need for new therapeutics to neglected diseases. A possible approach has been the exploitation of the inhibition of unique targets, vital to the pathogen such as the shikimate pathway enzymes, which are present in bacteria, fungi and apicomplexan parasites but are absent in mammals. The chorismate synthase (CS) catalyses the seventh step in this pathway, the conversion of 5-enolpyruvylshikimate-3-phosphate to chorismate. The strict requirement for a reduced flavin mononucleotide and the anti 1,4 elimination are both unusual aspects which make CS reaction unique among flavin-dependent enzymes, representing an important target for the chemotherapeutic agents development. In this review we present the main biochemical features of CS from bacterial and fungal sources and their difference from the apicomplexan CS. The CS mechanisms proposed are discussed and compared with structural data. The CS structures of some organisms are compared and their distinct features analyzed. Some known CS inhibitors are presented and the main characteristics are discussed. The structural and kinetics data reviewed here can be useful for the design of inhibitors. © 2007 Bentham Science Publishers Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Basic research is fundamental for discovering potential diagnostic and therapeutic tools, including drugs, vaccines and new diagnostic techniques. On this basis, diagnosis and treatment methods for many diseases have been developed. Presently, discovering new candidate molecules and testing them in animals are relatively easy tasks that require modest resources and responsibility. However, crossing the animal-to-human barrier is still a great challenge that most researchers tend to avoid. Thus, bridging this current gap between clinical and basic research must be encouraged and elucidated in training programmes for health professionals. This project clearly shows the challenges faced by a group of Brazilian researchers who, after discovering a new fibrin sealant through 20 years of painstaking basic work, insisted on having the product applied clinically. The Brazilian government has recently become aware of this challenge and has accordingly defined the product as strategic to the public health of the country. Thus, in addition to financing research and development laboratories, resources were invested in clinical trials and in the development of a virtual platform termed the Virtual System to Support Clinical Research (SAVPC); this platform imparts speed, reliability and visibility to advances in product development, fostering interactions among sponsors, physicians, students and, ultimately, the research subjects themselves. This pioneering project may become a future model for other public institutions in Brazil, principally in overcoming neglected diseases, which unfortunately continue to afflict this tropical country. © 2013 Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multivariate image analysis applied to the quantitative structure-activity relationships (MIA-QSAR) is a 2D QSAR technique that has been presenting promising outcomes for the development of new drug candidates, due to its simplicity, rapidity and low cost. In this way, the present study aims at introducing, consolidating and improving the new dimensions named aug-MIA-QSAR and aug-MIA-QSARcolor, as well as applying them to the study of neglected diseases, in order to obtain new drug targets using chemico-biological interpretation of the MIA molecular descriptors. Four compound data sets with experimental bioactivities against Chagas disease, malaria, dengue and schistosomiasis were evaluated using three approaches: MIA-QSARt, aug-MIA-QSAR and aug-MIA-QSARcolor. In general, representations of atoms as spheres with different colors and sizes proportional to the corresponding van der Waals radii (aug-MIA approaches) improved the predictive ability and interpretability in all data sets. The use of colors proportional to the Pauling´s electronegativity showed that MIA descriptors are capable of identifying periodic properties relevant for the studied activity. Finally, solid colors instead of spotlighted atoms allowed a correct identification of atoms by means of pixel values in the studies for malaria, dengue and schistosomiasis, which were, subsequently, useful for the chemical interpretation related to the bioactivity. It can be inferred that semicarbazones and thiosemicarbazones derivative with a tri-substituted ring in R1 group and a trifluoro methyl group in the R 3 position instead of a chlorine antitripanossoma resulted in higher activity. The antimalarial activity of quinolon-4(1H)imines can be improved if: 1) R1 and R2 are electron donor groups, 2) R3 has long aminoalkyl chains, and 3) R4 possesses substituents with big atomic volume. In the study for dengue, it was found that tetrapeptides with unbranched small size amino acids in the A1 and A4 positions can increase the substrate affinity (Km) to the NS3 protein, and when in A1 and A2 positions, the substrate cleavage rate (kcat). On the other hand, acidic amino acids in the A2 and A4 positions were found to be related with low substrate affinity to the NS3 protein and when present in A1, with low substrate cleavage rate. Finally, the presence of metoxy substituents in R1 (or R2) and R5 in the neolignan backbone can favor their antischistosomal activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"4,400 people die every day of AIDS in sub-Saharan Africa. Treatment exists. In about 60 days, a patient can go from here to here. We call this transformation the Lazarus Effect. It is the result of two pills a day taken by a HIV/AIDS patient for about 60 days. Learn more about how you can help give people the chance of life and joinred.com."The Lazarus Effect video, the (RED) Campaign.This Chapter explores how a number of non-government organizations, charities, and philanthropists have promoted ’grants' as a means of stimulating investment in research and development into neglected diseases. Each section considers the nature of the campaign; the use of intellectual property rights, such as trade marks; and the criticisms made of such endeavors. Section 2 looks at the (RED) Campaign, which is designed to boost corporate funding and consumer support for the Global Fund. Section 3 examines the role of the Gates Foundation in funding research and development in respect of infectious diseases. It explores the championing by Bill Gates of ’creative capitalism'. Section 4 considers the part of the Clinton Foundation in the debate over access to essential medicines. The Chapter concludes that, despite their qualities, such marketing initiatives fail to address the underlying inequalities and injustices of international patent law.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As leishmanioses estão entre as mais importantes endemias brasileiras e encontram-se entre as doenças mais negligenciadas no mundo. O arsenal terapêutico disponível é restrito, tóxico, caro e em algumas situações ineficazes, devido ao surgimento de cepas resistentes do parasito. No Brasil são registrados anualmente mais de 20 mil casos de leishmaniose tegumentar e a Leishmania braziliensis é a principal espécie causadora das formas clínicas cutânea e mucosa. Portanto tornam-se importantes estudos que conduzam ao desenvolvimento de novas alternativas terapêuticas. O objetivo do presente estudo foi avaliar a atividade da pterocarpanoquinona denominada LQB118 sobre Leishmania braziliensis in vitro e in vivo usando hamsters como modelo experimental. O efeito antiparasitário foi avaliado sobre o crescimento in vitro das formas promastigotas e sobre amastigotas intracelulares em macrófagos peritoneais de camundongos. Para avaliar o modo ação in vitro foi investigada a indução de apoptose usando marcação por TUNEL e Anexina V-FITC. O efeito sobre a modulação da ativação de macrófagos murinos foi analisada pela dosagem de óxido nítrico (reagente de Griess) e de citocinas IL-12, TNF-alfa e IL-10 (por ELISA) nos sobrenadantes de macrófagos. In vivo a atividade terapêutica da LQB 118 foi estudada em grupos de hamsters infectados com L.braziliensis na pata, tratados com a LQB118 pelas vias intralesional (100M/3x/semana) ou oral (0,5mg/5x/semana) após 7 dias de infecção durante oito semanas. A ação terapêutica foi analisada através do tamanho da lesão. A resposta imune foi avaliada durante o tratamento, pela resposta de hipersensibilidade tardia (DTH) ao antígeno total de L. braziliensis. A ação da LQB118 in vitro foi dose-dependente tanto na forma promastigota inibindo 45%, 64,7% e 99,95%, quanto nas amastigotas intracelulares 22%, 72% e 81% nas concentrações de 5M, 10M e 20M, respectivamente para ambas as formas evolutivas. A LQB118 foi capaz de induzir a externalização de fosfatidilserina em promastigotas (18,57% das células incubadas por 24 h e em 25,79% de células tratadas por 48h) e também promoveu aumento da fluorescência nas duas formas evolutivas da Leishmania quando comparadas aos controles, demonstrando a indução de fragmentação do DNA do parasito. Esta substância também foi capaz de modular a resposta dos macrófagos infectados por 24 horas aumentando de forma dose-dependente a IL-12 e NO, mantendo constante TNF-α. In vivo, na sétima semana de tratamento, observamos uma redução significativa do tamanho das lesões nos animais tratados com LQB 118 intralesional (p<0, 001) e no grupo tratado pela via oral (p<0,05) quando comparado com o controle. Estes resultados demonstram que a atividade anti-Leishmania da LQB118 é direta sobre o parasito pela indução de morte por apoptose, apresentando também uma ação moduladora da resposta dos macrófagos contribuindo para ação leishmanicida, sem alterar a morfologia da célula hospedeira e que a LQB 118 apresenta uma atividade terapêutica no modelo hamster e pode ser uma importante molécula para o desenvolvimento de um novo fármaco.